## Circles in a triangleMath brain teasers require computations to solve.
Find the radius of the inscribed and circumscribed circles for a triangle.
## AnswerLet a, b, and c be the sides of the triangle. Let s be the semiperimeter, i.e. s = (a + b + c) / 2. Let A be the area of the triangle, and let x be the radius of the incircle.Divide the triangle into three smaller triangles by drawing a line segment from each vertex to the incenter. The areas of the smaller triangles are ax/2, bx/2, and cx/2. Thus, A = ax/2 + bx/2 + cx/2, or A = sx. We use Heron`s formula, which is A = sqrt(s(s-a)(s-b)(s-c)). This gives us x = sqrt((s-a)(s-b)(s-c)/s). The radius of the circumscribed circle is given by R = abc/4A. Hide ## What Next?
Tweet
See another brain teaser just like this one...Or, just get a random brain teaser If you become a registered user you can vote on this brain teaser, keep track of which ones you have seen, and even make your own. Back to Top |